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Abstract

Nonlinear kernel Support Vector Machines achieve bet-
ter generalizations, yet their training and evaluation speeds
are prohibitively slow for real-time object detection tasks
where the number of data points in training and the num-
ber of hypotheses to be tested in evaluation are in the or-
der of millions. To accelerate the training and particularly
testing of such nonlinear kernel machines, we map the in-
put data onto a low-dimensional spectral (Fourier) feature
space using a cosine transform, design a kernel that ap-
proximates the classification objective in a supervised set-
ting, and apply a fast linear classifier instead of the con-
ventional radial basis functions. We present a data driven
hypotheses generation technique and a LogistBoost feature
selection. Our experimental results demonstrate the compu-
tational improvements 20∼100× while maintaining a high
classification accuracy in comparison to SVM linear and
radial kernel basis function classifiers.

1. Introduction

Discriminative kernel machines are found their way into
many classification tasks because they can approximate any
decision boundary arbitrarily well with an efficient general-
ization capability. Among those, Support Vector Machines
(SVM) implicitly map the data x ∈ Rd into a dot product
space F , called as the feature space, via usually a nonlinear
lifting φ : Rd → F , x 7→ φ(x). Although F can be high-
dimensional (infinite for certain liftings such as Gaussian
radial basis functions), it is not necessary to explicitly work
in that space. Besides, direct access to an infinite dimen-
sional Hilbert space may not be possible. Instead of map-
ping data via φ and computing inner products, we can do
it in one operation, leaving the lifting completely implicit,
thus, all we need to know is how to compute the modified
inner product, so called as kernel k(x,y).

Mercer’s theorem enables characterizing kernels without
the lifting function. A symmetric function k(x,y) can be
expressed as an inner product k(x,y) = 〈φ(x), φ(y)〉 for

some φ if and only if k(x,y) is positive semidefinite, that is∫
k(x,y)g(x)g(y)dxdy ≥ 0 ∀g. (1)

There exists a class of kernels, which can be shown to
compute the dot products in associated feature spaces. In
other words, any positive definite function k(x,y) with
x,y ∈ Rd defines an inner product and a lifting φ so that
the inner product between lifted data points can be com-
puted as 〈φ(x), φ(y)〉 = k(x,y), thus all inner product
computations in F are reduced to the evaluation of the ker-
nel.

SVM based classifiers construct a separating hyperplane
inF , which maximizes the margin between the two datasets
while minimizing the classification error. It can be shown
that using Hinge loss as penalty to errors and for some pos-
itive value of a soft margin cost parameter C determining
the trade-off between margin maximization and training er-
ror minimization, the resulting training problem consists of
computing

max
α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjk(xi,xj) (2)

subject to 0 ≤ αi ≤ C and
∑
αiyi = 0 where yi are the la-

bels corresponding to the data points xi. The classification
solution as a result of the above optimization is given as

H(x) = sgn

(
l∑
i=1

αiyik(x,xi)

)
(3)

and the data points with αi > 0 are called as support vec-
tors. One advantage is that the algorithm accesses the data
only through evaluations of k(xi,xj).

One important drawback of SVM is that whenever one
wants to train it with a nonlinear kernel, the algorithm scales
very poorly with the size of the training data. That is, when
the size of the training data is in the order of hundreds of
thousands, training phase of the algorithm can take days.
To extend learning with kernel machines to large datasets,
decomposition methods are often employed. These meth-
ods iteratively update a subset of the kernel machine coef-
ficients using coordinate ascent until Karush-Kuhn-Tucker
conditions are satisfied within a tolerance factor [1].
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It is shown that linear machines can be trained quickly
on large datasets when the dimensionality of the data is
small [2, 3, 4]. One way to take advantage of these lin-
ear training algorithms for training nonlinear machines is
to approximately factor the kernel (Gram matrix consisting
of kernel function applied to all pairs of data points) and
to treat the columns of the factor matrix as features in a
linear machine [5]. The evaluation of the kernel function
can also be accelerated using linear random projections by
discarding individual entries [6] while obtaining sparse ap-
proximations of the true Gram matrix, or entire rows [7, 8]
of the Gram matrix while preserving the separability of the
data. Alternatively, Taylor approximation methods have
been proposed [9]. While these approaches appear to be ef-
fective on low-dimensional problems, their results degrades
exponentially with the dimensionality of the dataset.

Second important drawback is the computational load of
the test phase. For linear machines, testing a given data
point is very efficient as it only requires computing one in-
ner product. On the other hand, for nonlinear machines one
must apply as many kernel evaluations as the number of the
support vectors to compute the projection of the data point
onto the separating hyperplane normal. Fast nearest neigh-
bor lookup with kd-trees has been used to approximate mul-
tiplication with the Gram matrix for embedding such linear
assignment problems [10]. An explicit mapping the data
to a low-dimensional Euclidean inner product space using
a randomized feature map for approximating shift invariant
kernels is also proposed in [11]. The randomized features
give an access to fast learning algorithms and also provide
a way to quickly evaluate the kernel machine. On the other
hand, the proposed random selection scheme is highly sen-
sitive to the sampling, thus the accuracy of the resulting lin-
ear learning algorithm varies at each newly added dimen-
sion. Besides, it does not take advantage of the available
class membership information for classification.

Although the existing works so far can linearize the ker-
nel to speed up the test and training phases, they fail to ex-
ploit the class labels. Mostly, the linearization is blind and
independent of the context and data prior.

Here, we present a novel algorithm that drastically
speeds up testing of nonlinear kernel machines. We factor
the kernel function itself, however this factorization is con-
veniently data driven, and allows us to convert the training
and evaluation of a kernel machine into the corresponding
operations of a linear machine by mapping data into a rela-
tively low-dimensional feature space that is determined by
the distributions of the binary class labels. To our knowl-
edge, this is the first time a data driven representation of a
nonlinear kernel into a frequency space is proposed for sig-
nificantly bringing down the computational load.

We first generate a set of Fourier features that are rich
enough to approximate the separating boundary between

Figure 1. Mapping into Fourier space on an ω vector while con-
sidering the separability of the data points.

two classes of data points and the continuous, shift-invariant
kernel that we implicitly impose. Our intuition is that
a data driven low-dimensional mapping through a set of
Fourier features will enable better generalization (robust-
ness to variations) of the classifier while efficiently approx-
imating the correct decision boundary at the same time.

Instead of relying on the lifting provided by the kernel
trick, we explicitly map the data to a low-dimensional Eu-
clidean inner product space using a data driven feature map
z : Rd → Rm so that the inner product between a pair
of transformed points approximates their kernel evaluation
k(x,y) = 〈φ(x), φ(y)〉 ≈ z(x)T z(y). Unlike the kernel’s
lifting φ, z is low-dimensional. Thus, we can simply trans-
form the input with frequency mapping onto z, and then
apply linear methods to approximate the decision bound-
ary established through a nonlinear kernel. Fourier feature
mapping is illustrated in Fig. 1.

In training, we employ LogitBoost [12], which is a logis-
tic regression on the hyperplane normal, to select features
from this set while directly optimizing the classification ac-
curacy as opposed to targeting kernel function approxima-
tion. We start with the set of hypotheses, i.e. Fourier fea-
tures, that are constructed from the labeled training data.
Then for each hypothesis, we map the data onto a vector.
We apply weighted least squares fitting of the labels to the
mapped data and compute a regression error. We select the
hypothesis that gives the minimum regression error. After
adjusting the weights, we select the next hypothesis.

This way, we collect only useful Fourier features to train
a linear machine. In comparison to [11] where features are
collected totally random and independently, we take advan-
tage of the available training data and the corresponding la-
bels in a supervised setting.

By approximating the nonlinear separating boundary as
an inner product of Fourier transformed features and elim-
inating non-descriptive features by feature selection, these
data driven feature maps give us access to extremely fast
algorithms to quickly evaluate the classifier. For example,
with the kernel trick, evaluating the radial basis function
support vector machine at a test point x requires O(Nd)
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operations, where N is the number of training points, to
compute and retain much of the dataset unless the boundary
is simple and sparse. This is often unacceptable for large
datasets. On the other hand, after learning a hyperplane
ω, a linear machine can be evaluated by simply computing
f(x) = ωT z(x), which requires only O(m(d+1)) oper-
ations and storage, where m is the number of the selected
features. Note that, for most problems m << d < N .

Our work can also be considered as kernel design where
we naturally construct a data driven kernel as opposed to
approximating the kernel. Therefore, the classification ac-
curacy of our algorithm is not upper bounded by a fixed
kernel function. In fact, we obtain better classification re-
sults in some datasets in addition to significantly decreasing
the computational load. Our experiments show that these
frequency mapped features, combined with very simple lin-
ear learning techniques, compete favorably in speed and ac-
curacy with the state-of-the-art kernel-based classification
algorithms.

2. Fourier Features
Bochner’s theorem [13] from harmonic analysis on

groups characterizes the Fourier transform of a positive fi-
nite measure. Given a positive finite Borel measure µ on the
real line L, the Fourier transform f(ω) of µ is the continu-
ous function

f(ω) =

∫
L
e−jωxdµ(x) (4)

The function f(ω) is a positive definite function, that is the
kernel k(x,y) = f(x − y) is positive definite. Bochner’s
theorem also says the converse is true, i.e. every positive
definite function f(ω) is the Fourier transform of a positive
finite Borel measure µ;

Theorem. A continuous kernel k(x,y) = f(x− y) on Rd
is positive definite if and only if f(x − y) is the Fourier
transform of a non-negative measure.

When the kernel k(x,y) is properly scaled, Bochner’s the-
orem guarantees that its Fourier transform f(ω) is a proper
probability distribution:

k(x,y) =

∫
Rd

f(ω)ejω
T (x−y)dω = E[ejω

T (x−y)]. (5)

In other words, ejω
T (x−y) is an unbiased estimate of

k(x,y) when ω is drawn from the Fourier transform f .
Since the kernel is even and real valued, and the probabil-
ity distribution f(ω) is purely real, the integrand ejω

T (x−y)

may be replaced with cos(ωT (x − y)). Defining zω(x) =
[cos

(
ωT (x)

)
sin
(
ωT (x)

)
]T gives a real valued mapping

that satisfies the condition E[zω(x)
T zω(y)] = k(x,y),

since zω(x)
T zω(y) = cos

(
ωT (x− y)

)
. Each ω maps a

data point onto two coefficients as

zω(x)
T zω(y) = cos

(
ωT (x− y)

)
= [cos(ωTx) sin(ωTx)]T [cos(ωTy) sin(ωTy)] (6)

It is also possible to show that defining zω(x) =√
2 cos

(
ωTx+ b

)
and z(x) = n−0.5[zωi

]T where n is the
cardinality of set {ωi} and b is a phase parameter uniformly
drawn from [0, 2π] also gives a real valued mapping, onto
a single coefficient this time, that satisfies the condition
E[z(x)T z(y)] = k(x,y). For a set of properly drawn ran-
dom bases {ωi} and by law of large numbers,

z(x)T z(y) ≈ k(x,y). (7)

Above, we show that Fourier features can approximate
any even and real-valued nonlinear kernel. However, this
process is blind to the content and given training data as it
does not utilize class label information or density distribu-
tion of points. Our goal is not to approximate a prefixed
kernel but to find a linear representation of a complex sepa-
rating boundary via Fourier features that optimize the clas-
sification performance. Now, the problem comes how to
select a set of ω’s such that the final classification perfor-
mance is optimized. For object detection tasks, a training
dataset with binary labels indicating the class memberships
is often available. It is desirable to make the best use of
these additional prior.

To accomplish this we select the salient Fourier features
that minimize a negative binomial log-likelihood of the data
as we discuss in the following section.

3. Boosted Feature Selection
Boosting iteratively combines weak classifiers (hypothe-

ses) that favor of those instances misclassified by previous
hypotheses. On each round, a distribution of data point
weights are updated. The weights of each incorrectly clas-
sified data points are increased and the weights of each cor-
rectly classified data points are decreased, so that the new
classifier focuses more on those examples.

For the binary classification problem we have yi ∈
{−1, 1}. We initialize the weights of the data points at the
first round β0

n = 1/N for all n = 1, ..., N . We choose a
weak classifierht with respect to the weighted data points.
The probability of x being in class 1 is represented by

p(x) =
eH(x)

eH(x) + e−H(x)
H(x) =

1

2

L∑
t=1

ht(x). (8)

The LogitBoost algorithm learns the set of regression func-
tions ht(x)t=1..L by minimizing the negative binomial log-
likelihood of the data by

−
N∑
n=1

[yn log(p(xn)) + (1− yn) log(1− p(xn))] (9)
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Figure 2. Fourier feature mapping and separation of data points.

through Newton iterations. At the core of the algorithm,
LogitBoost fits a weighted least square regression, ht(x) of
training points xn to response values λn and weights βn as

λn =
0.5(yn + 1)− p(xn)
p(xn)(1− p(xn))

, βn = p(xn)(1− p(xn).

(10)
The final response of the classifier is H(x) =

sgn
∑
ht(x). At each iteration, a set of hypotheses SM :

{ω1, ..., ωM} are tested. The hypothesis that reduces the
negative exponential loss most is combined in the boosted
classifier as the current weak classifier, included in the sub-
set of hypotheses Sm, and m iterations are repeated until a
performance level is achieved or an upper bound on com-
putational load is reached. Here, m is the dimensionality of
transform space and cardinality of the set Sm ⊂ SM .

An important question is how to determine the set
of hypotheses SM and thus Sm adaptive to the training
data. Each hypotheses corresponds to a vector zω(x) =√
2 cos

(
ωTx+ b

)
that is desired to be normal to a separat-

ing hyperplane between the two classes. The magnitude of
this vector represents a space combing frequency.

To obtain the set of hypotheses SM we apply a gen-
erative model based selection scheme. We extract sepa-
rate probability distribution functions p− and p+ that in-
dicate local density for both classes {−1,+1}. We sam-
ple M points from each of these distributions to construct
point pairs {(x−,x+)}1..M . Each hypothesis corresponds
to a pair such that ω = π

|x+−x−|2 (x
+ − x−) the comb-

ing frequency is |ω| = π
|x+−x−| , and the corresponding

phase shift is b = −ωTx+. In other words, we assign ω
as the vector that connects the points of the sampled pair
with the corrected norm such that cos(ωTx− + b) = −1,
cos(ωTx+ + b) = 1, and cos(0.5ωT (x+ − x−) + b) = 0.
This means we place one of the separating boundaries (co-
sine function has infinitely many sign changes, thus separat-

Figure 3. Road signs have different shapes and no color cue is
available to help the detector.

ing boundaries) on the middle of both points as illustrated in
Fig. 2. It is also possible to apply a weighted discriminant
constraints at each iteration by incorporating point weights
when we extract the probability density functions p−, p+
for tighter fittings.

After LogitBoost feature selection, we only have the m
useful Fourier features in terms of classification. This map-
ping is nonlinear by nature of Fourier bases and the proce-
dure we use selects m features from a the set SM . There-
fore, we can train linear methods in this new transform
space, x → z(x) =

√
2m−0.5[cos

(
ωTx+ b

)
1..m

]T , re-
turned by the boosted feature selection.

The frequency mapping based feature selection helps to
eliminate redundant and irrelevant features for classifica-
tion. In addition it enhances the generalization capability
and speeds up both training process and testing load. Com-
putationally, the above transformation requires only m dot
products. As we only use the useful features the set SM is
minimal and so the speed up comes from this process.

It should be noted that, determining the optimum subset
is NP-hard as it projects onto a combinatorial problem by
nature. Yet, greedy boosting solutions provide satisfactory
performance especially when M ∼ N without affecting the
speed of the testing phase.

4. Experimental Evaluation

Since human detection and road sign detection are two
critical applications in video surveillance and vehicle nav-
igation, we demonstrated the potential of our algorithm on
these sample tasks.

For road sign detection, we apply a detection window
over the gray-level input image. Because the size of the road
sign is unknown, the scanning has to be done on multiple
scales. We have a total of 20 different sign classes that in-
cluding square, circular, and triangular shapes and different
pictographs as shown in Fig. 3. We select the 10K positive
and 100K negative 48×48 samples as the training set from
multiple traffic videos. As for the test set, we randomly
select another 8386 positive and 100K negative samples.
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Figure 4. Our method achieves using 45 features 15× speed up in
comparison to the SVM-radial, which uses 700 support vectors,
with only 4% detection rate loss.

We compute the histogram of oriented gradients (HOG) de-
scriptor for each sample. HOG consists of 6times6 blocks
(a total of 36 blocks, each is 8×8 in size), and each block
is represented by a 9-bin histogram. Concatenating the his-
tograms of these 36 blocks, we obtain a 324 dimensional
feature vector for each sample.

A positive (negative) sample is counted as a true detec-
tion (false alarm) if is classified as positive. We set the false
alarm operation point to 0.0002 and compared the true de-
tection rates for all classifiers. For comparisons, we evalu-
ated several classifiers. (1) SVM-radial kernel with C=19
and σ=1. This classifier gives 91% true detection rate.
However, it requires 700 support vectors, which means 700
dot products for every sample. (2) SVM-linear with C=1.
This linear classifier gives nearly 81% detection rate and it
needs only one dot product computation. (3) SVM-linear
for varying number of Fourier features selected completely
randomly from the kernel distribution as explained in [11].
(4) Our method: SVM-linear for varying number of Fourier
features selected in a data driven manner as explained be-
fore.

As shown in Fig. 4, our method quickly outperforms the
SVM-linear and using less than 20 features and its perfor-
mance converges to the SVM-radial as the number of the se-
lected features increases. Table 1 presents the computation
times for the classification of 1000 samples from road sign
detection dataset using MATLAB code. The SVM-radial
implementations are optimized for speed. Our method takes
390ms and achieves 86.6% detection rate. Given the same
processing time, the random selection [11] results in 30.5%

Figure 5. Samples from human dataset.

detection rate in comparison. Its converging behavior is
much slower; the random selection is still remains consid-
erably behind using even more than 100 Fourier features.
When the number of features is 45, our method is nearly
20× faster than the SVM-radial for only 4.2% detection rate
loss requiring only 390ms in comparison to 7.5s.

The detection rates of our method and [11] sometimes
decrease as the number of features increases. This is mainly
due to the greedy feature selection mechanism and possibly
unintentional overfitting to the training data. Regardless,
both methods improve as the number of features increases
while our method converges faster.

For human detection, we tested our method on the IN-
RIA datasets where 2416 (685) positive and 10000 (14315)
negative samples are included in training (testing) phase.
We used a HOG descriptor where each 64×128 sample is
represented by 8×4 blocks, for which a 9-bin histogram is
computed and normalized. The final feature vector is 288
dimensional. Note that, our feature is much simpler than
the one in [14] where each block is represented by 36 co-
efficients, and each 64×128 sample is represented by 7×15
blocks, resulting in a 3780 dimensional feature vector.

For comparisons, we trained the classifiers at 0.0015
false alarm rate. Since we used a much simpler HOG to
demonstrate the strength of our solution, we had to choose
a higher false alarm rate to present a statistically meaningful
evaluation. Nevertheless, it is always possible to use more
blocks and cells, or even another set of features to obtain
very high detection rates as in [14]. Our purpose here is
to quantify the reduction in the computational complexity
while outperforming the SVM-linear and the random selec-
tion [11], and converging to the SVM-radial [14] perfor-
mance.

Figure 6 shows that the proposed frequency mapping

Table 1. Computation Times
Detection Rate Time (ms)

SVM-linear 81.1% 10
SVM-radial 90.8% 7500
Rahimi [11] 30.5% 390
Our (45 features) 86.6% 390
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Figure 6. Our method outperforms both random selection and
SVM-linear (and even SVM-radial) while processing 140× faster
than SVM-radial.

based method outperforms the SVM-linear using less than
30 features, and needs less than 50 features to match the de-
tection accuracy of the SVM-radial, which uses 4871 sup-
port vectors. Considering the number of operations, nearly
100× speed up is achieved by our method (∼50 dot prod-
ucts vs. 4871 dot products plus that many exponential op-
erators and additions.

On the other hand, the detection rate of the random se-
lection cannot match the SVM-linear even for 100 features,
which indicates the data driven approach is a better choice
than fixed (or randomly assigned) kernel approximation on
this dataset. More interestingly, using more features results
in better detection rates than the SVM-radial. This shows
the data driven feature selection acts as an effective kernel
design where the dot products in the transform space corre-
spond to a kernel composed of the selected features.

5. Conclusion
We proposed a general purpose data driven feature trans-

formation and selection for support vector machines that
provides 20∼100× speed up for classification. Our method
adds features in a way that the performance improves at
each iteration on the training data and it is expected to fol-
low the same trend on the test data, which has been em-
pirically observed. This means that our method is scalable,
i.e., the performance of the classifier can be optimized for
the available computational resources, which is not possible
using the conventional SVM-linear and SVM-radial algo-
rithms.

Our tests also show that it is possible to optimize the test-
time speed for real-time processing.
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